Internals of Derby

An Open Source Pure Java Relational Database
Engine

Daniel John Debrunner
STSM — IBM Data Management
(1.1 2004/ 09/ 20)

Colo /”\—

ﬁware Summit

!'_ Introduction

= After a quick overview of Derby, | will
present some of the internals of the
technology.

= Internal features will be covered at a
high level, including some of the
lessons learnt over the years.

= Please feel free to ask questions as we
go.

= This is not a complete guide to the
Internals of Derby, for that read the
source code!

!'_ Agenda

= Derby Overview

= System internals
= Language internals
= Store internals

!'_ Apache Derby

= |IBM contributed the Cloudscape
source code to the Apache Software
Foundation as Derby

= Apache DB project sponsored Derby
Into incubation at Apache

Derby now up and running at Apache

Derby is an effort undergoing incubation at the Apache
Software Foundation. Incubation is required of all
newly accepted projects until a further review indicates
that the infrastructure, communications, and decision-
making process have stabilised in a manner consistent
with other successful ASF projects. While incubation
status is not necessarily a reflection of the
completeness or stability of the code, it does indicate

!'_ Brief History

1996 — Cloudscape, Inc startup — Oakland,
CA

1997 —-IBMS 1.0

Apr 1999 — Cloudscape 2.0

Dec 1999 — Acquired by Informix Software
June 2001 — Cloudscape 4.0

July 2001 — Acquired by IBM

Dec 2001 — IBM Cloudscape 5.0

2003 — IBM Cloudscape 5.1, 5.1FP1 & FP2

» Significant IBM use as a component
Attaust 2004 — Onen <0tirced as Derhv at

!'_ Derby Embedded Engine

Pure Java

Embedded Database

Small Footprint

Standards Based

Complete Relational Database Engine

!'_ Pure Java

= Completely written in Java

= Supports J2SE 1.3/1.4/1.5 with single
jar

= Runs anywhere — Linux, Windows,
MacOS, Solaris, I- Series, z- Series

= Database format platform
iIndependent too

!'_ Embedded Database

= Database engine becomes integral
part of the Java application

= No additional process

» Application's JDBC calls now just result Iin
method calls within same JVM

= Just a Jar file to the application

= Database invisible to end user of
application

!'_ Embedded with Application

Java Virtual Machine

- Database only accessible from
- Java/ JDBC only

No network connectivity

JDBC
- Typically is single application

- per JVM (but could be multiple)

Database(s)
on disk

Empedded In Application
Server

Java Virtual Machine

App Server

—
BT EFD ERD Web- clients

IDBC I It’s just an embedded use of

Derby where the application
server is the application

Database(s)
on disk

3_ Small Footprint

= Engine jar file is around 2Mb

» Optional Jar files

Network server ~150k
Tools ~200k

= Runtime memory use

> Dependent on application, data caching,
etc.

» Can run when Java heap memory
restricted to 4Mb

» Have run in machines with only 16Mb
physical memory

!'_ Standards

. SOL
»SQL92, SQL99, SQL2003, SQL/ XML,

= Java
»J2SE1.3,14
> JDBC 2.0 & 3.0

> J2EE — certified as a JDBC driver for
J2JEE14 & 1.3

> J2ME/ OSGI
= DRDA

Complete Relational Engine

= Multi- user, multi- threaded, transactions,
row locking, isolation levels, lock deadlock
detections, crash recovery, backup & restore

- SOL

> Tables, indexes, views, triggers,
procedures, functions, temp tables

> Foreign key and check constraints
> Joins, cost based optimizer

= Data caching, statement caching, write ahead
log, group commit

= Multiple databases per system

!'_ Agenda

= Derby Overview

= >> System Internals
= Language internals
= Store internals

!'_ Original Cloudscape

= Database engine for highly pervasive
market

= Small footprint for PDASs
= Written in Java for

» Platform independence
» Data independence
= Support multiple APIs

» Possible low level storage API
» Possible execute only engine

!'_ What Was Built

= JDBC driver that is a database engine

» Trying to isolate JDBC from rest of engine increased
footprint, needless conversions

= Footprint too big for PDASs

> No PDAs running Java back in 1997

» Ran on Psion 5mx with 16Mb, but boot time 40
seconds

» Early customers wanted all the typical SQL features
= No low- level API, but much code
Infrastructure to support it

».Adds code, multiple connection and transaction state
objects

Typical JDBC Code

= PreparedStatenent ps = conn. prepareStat enent (
“SELECT ORDERI D, COST FROM CORDERS
VHERE CID = ? AND COST > ?7);

ps.setlnt(1l, custoner);
ps. set BigbDecimai | (2, threshold);

Resul tSet rs = ps. executeQuery();

while (rs.next()) {
Int orderld = rs.getint(1);
Bi gDeci mal cost = rs. getBi gDeci nal (2);
/| process order

}

rs.close();
ps. cl ose();

= Typical for web- applications, client applications will re- use
PreparedStatement multiple times.

Typical JDBC Code

Prepar edSt at enent ps = conn. prepar eSt at enent (
“SELECT ORDERI D, COST FROM ORDERS
VHERE CID = ? AND COST > ?7);

ps.setlnt(1l, custoner);
ps. set Bi gDeci mal (2, threshold);

Resul tSet rs = ps. executeQuery();

while (rs.next()) {
Int orderld = rs.getint(1);
Bi gDeci mal cost = rs. get Bi gDeci nal (2);
/| process order

}

rs.close();
ps. cl ose();

Every method call in red is a call into the JDBC driver

JDBC Threading Model

= (T1) conn. prepareStatenent (
“SELECT ORDERI D, COST FROM ORDERS
VWHERE CID = ? AND COST > ?7)

(T2) ps.setlint(1l, custoner)
(T7) ps.setBigbecinmal (2, threshol d)

(T4) ps. executeQuery()
(T7) rs.next()

(Tl) rs.getlnt(1)

(T9) rs.getBigbDeciml(2)

(T2) rs.close()
(T3) ps.close()

= Driver has to assume every call could be from a different
thread

wr99199% of the time, it won't be

Timin

(T1) conn. prepareStat enent (

“ SELECT

[/ coul d

(T2) ps.
(T7) ps.

(T4) ps.
/1l could
(T7) rs.
(T1) rs.
(T9) rs.

(T2) rs.
(T3) ps.

ORDERI D, COST FROM ORDERS
VWHERE CID = ? AND COST > ?7)
be significant tinme between prepare and execute

setint(1l, custoner)
set Bi gDeci mal (2, threshol d)

execut eQuery()

spend significant tine in executeQuery
next ()

getint (1)

get Bi gDeci nal (2)

cl ose()
cl ose()

Two.chances for underlying table to be modified, between
prepare and execute, and in execute while waiting for intent
locks on table

Logical Architecture

Embedded JDBC Layer

Query Parser & Query Execution
Compiler

Monitor

| %

Virtual Table Interface Store

Services

!Module Architecture

Primary
e %@
. . . Service Modultgs_—j

bystem Modules Service

.Primary

Service Modules

o ®
-vice.properties

[da)

Persistent Service

Module

= Set of usable functionality
= Well defined API — “protocol”
= Protocol separated from implementation

= Typically declared as set of Java
Interfaces

= |dentified by single Java interface,
“factory class”.
> eqg.
org.apache.derby.iapi.services.locks.LockFactor
y

= May reference other module protocols

= Zero or more implementations in a
running system

= Implementation can implement control

Interfaces to:
»-Define additional boot & shutdown actions

> Dafine cliitahility for readiiected fitnctionnalityv

Service

= Collection of co- operating modules
providing a complete set of functionality.

= Single primary module defining external
API

= Persistent

> Boot- up state in single service.properties file,
Including the required primary module
iIdentification (as the protocol, not the
implementation)

= Non- persistent
> Purely run-time definition.

= Modules always booted through monitor

!'_ Monitor
= Manages Derby system

Boots & shutdown Services

Finds service.properties file based upon
service boot

Maps requests for a module protocol to
an implementation.
Based upon:

> Virtual machine environment (J2ME/ J2SE
1.3/1.4)

> Available classes (e.g. JCE encryption
classes)

» Suitability for current service

Ensures system is not garbage
collected away

!'_Database Engine System

fava.sql.Driver protocol

Error Logging, JDBC Driver
Context Manager Modules

..ibm.dej.

services, sql, store Modules

e 0@
-viC(eerch)pertigs__j

Databbase - /usr/djd/ salesdb

abase.Database protocol

Why a Complex Monitor?

= Protocol separation from implementation
» Good programming practice
> Allowed early rapid development
> Allows specific unit level module testing
= Single jar file supports multiple Java
environments with no settings from

application or user (ease of use)
> JDK 1.1, 2ME, J2SE1.2,1.3, 1.4

= Supports different implementations from
single source tree
» Database, Cloudsync server, Cloudsync
target
= Supports different store implementations
with no change to language

> Disk, read- only, database in a jar, database
on HTTP server

!'_ Issues with Monitor

= Selection between implementations
that satisfy requirements is not

defined.

= Implementation list in single resource
(modules.properties), no ability to add
additional implementations Iin
separate jar

= Allowing dynamic implementation
selection could comprise security.

!'_ Session State & Error Cleanup

= Design goals
» Avoid bugs in error handling code

» Consistent resource cleanup
» Modular state objects

!'_ Consistent Exception Clean

= Single exception model
(StandardException)

= SQLEXxception thrown through JDBC

» Hence conversion always needed
= Five possible actions for an exception

» Statement rolled back

» Transaction rolled back

» Session (connection) closed
» Database close

»8ystem shutdown

!'_ Exception Model

= Originally five sub- classes, e.g.
TransactionException

» Complicates severity checking, adds code

= Now all action driven by integer
severity level

= Exception cleanup for regular path as
well. Connection.close() throws a close
session severity exception

= Ensures cleanup code is correct, no
hidden bugs due to infrequently
executed cleanup

!L Context Cleanup

* Each session has a stack of context
objects

= Each context object maintains session

state and handles cleanug=ach context is passed tl
exception & performs

Its own cleanup, includin
possibly popping itself o
the stack

Indicates if it is the last

context for that severity

X

3 Thread to Context Mapping

Derby & JDBC do not hard link Thread
to Connection

Application may use any Thread to
execute methods on any Connection or
JDBC object

Derby links application Thread to
Session/ Connection for the lifetime of
the JDBC method call

» All work performed using application's
thread, not Derby worker threads

!'_ Single Active Thread per
Thread A Thread BThread C‘

executeQuery

uo

leol|ddy

execute

=
O
o
O

JDB

*A Blocks B

Session C1 linked Session C2 linked
to Thread A to Thread C

qJad

While in Derby space Thread can find its
Context Stack object with no state

!I- Thread Mapping

= Originally used HashMap with Thread
reference as key, stack as value

» Slow, single threaded
= Now use Java 2 ThreadLocal

» Faster, but still costly

» Not supported on some J2ME
configurations

= Optimised to avoid mapping when not
strictly required

> ResultSet.get XXX() methods, too
expensive to map Thread to context every

N

!'_ Improved Context Mapping

= Ensure Context stack Is always
avallable through method call
parameters

» Directly as passed parameter

»Indirectly through fields or methods in
passed parameters

= Large amount of code to re-work

= JDBC requires stateless mapping due
to connection access In server side

methods

> DriverManager.getConnection
(“idbc:default:connection”):

!'_ Thread Safe

= Single active thread per session
simplifies state management within a
session

= Derby code still multi-thread aware
for shared resources such as data
cache, lock manager, statement cache,
etc.

= Thread safe but not optimised for
multiple CPUs, hidden in
iImplementations of caches and lock
manager

Generic Cache/ Lock

Cache Manager caches objects that implement
a Cacheable interface

Handles aging, pruning, etc.

Caches pages, statements, string translations,
open files, dictionary objects

LockManager locks objects that implement a
Lockable interface

Lock compatibility defined by Lockable, not
manager

Centralizes “hard” thread- safe issues

!'_ Agenda

= Derby Overview

= System internals
= >> Language internals
= Store internals

!'_ SQL Compllation

= PreparedStatement ps =
conn.prepareStatement(
“SELECT * FROM T WHERE ID = ?77);

1) Look up in cache using exact text
match

(skip to 5 if plan found in cache)

2) Parse using JavaCC generated parser
3) Bind to dictionary, get types, etc.
4) Generate code for plan

5) Create instance of plan

!'_ Parse Phase

= Tree of Query Nodes created

= Many Nodes, one per operation type

» FromBaseTable, MethodCallNode,
DistinctNode, CurrenUserNode, ...

» Bulk of code footprint is SQL compiler

= Switch to smaller number of building
blocks?

= No execution code in Query Nodes,
eads to similar set of execution
ResultSets

= Duplicate checking of state in Query

!'_ Generate Phase

= Generate Java byte code directly, Into
INn-memory byte array

= Load with special ClassLoader that
loads from the byte array

= Single ClassLoader per generated
class

> Allows statements to be aged out
iIndependently

= Generated class extends an internal
class BaseActivation which provides
support methods, common

i o M [

!'_ Activation — Instance of plan

= Instance of generated class called
Activation

= Holds query specific state, parameters,
etc.

= Connected indirectly to JDBC
PreparedStatement through
holder/ wrapper class that implements
Activation interface

= Holder allows compiled plan to change
without knowledge of application,
transparent to PreparedStatement

!'_ Activation — Execution

 PreparedStatement.execute methods

= Creates tree of internal ResultSet
objects that map to SQL operations

> ScanResultSet
> SortResultSet
> IndexScanResultSet

= Generated code main glue code

= Expressions are generated as methods
In generated class

Statement Results

JDBC PreparedStatement L_deate Count _
(int) for non- queries

~
-
-~
-
-
-
-~
-

(Language) ResultSet Tree
Generated by activation
execution, performs updates,
fetches rows, etc.

e.g. ProjectRestrictResultSet
on top of IndexScanResultSet

JDBC ResultSet

Accesses rows from top
LRSin tree to present them
as a JDBC ResultSet

!'_ Benefits of Generated Code

= No need to have Derby specific
interpreter written in Java, just use
JVM

= Generated code will get JiIT'ed and
thus gain the performance benefits

= Tight integration with Java calls from
SQL, e.g. SOL functions written in Java.
No use of (slow) reflection, just
compile method call into generated
class

!'_ Issues with Generated Code

= First run on a new Java Virtual
Machine pretty much guaranteed to
break, find VM bugs

» Derby generates code to JVM
specification

»VMs tended to only expect code as
generated by Java compilers

»Much better in recent years

»Sun and IBM use Cloudscape database
tests in their nightly VM testing

!'_ Issues with Generated Code

= Debugging — hard, no source, no byte
code file, no line numbers, no mapping

to elements in SQL statement

» Debug options to:

dump byte code file
add “line numbers” that map to byte code

offsets
= |[n system with multiple active
statements can be hard to figure out
which generated class maps to which

SQL statement

!'_ Generator History

= Generator module initially used Java
source code & javac for speed of
Implementation

= Then direct byte code implementation,
using same APIs (interfaces)

= Byte code used for product, java
source for debugging

= Compilation was slow, significant time
spent In generation

!'_ ByteCode Generator Issues

= Too many objects created — object per
byte code instruction

= Too many classes — footprint issues

= Tree of objects representing
generated class mimiced structure of
class format generator

= APl was not neutral, translated
naturally into Java source, not into
byte code

!'_ ByteCode Improvements

= Changed API to match fast byte code
gen eration — dropped Java source implementation

= QueryNodes generate almost at the
byte code level, definite knowledge of
stack based VM

= Number of classes reduced to 16
(4,12) from 65 (14,51)

= Close integration with class format
builder

= Method code arrays built as- you-go

!'_ Generator Optimizations

= Methods added to activation interface
for 10 expressions, allows direct
execution rather than through
reflection

» Still support arbitary number of
expressions, others will be called through
reflection

= Generated second class to act as an
Activation factory, avoids use of
reflection to create instance of
generated class

» Not used as most JVMs now optimize

!'_ Artifact of Compile Model

= Each SQL statement involves class
generation and loading, performance
hurt by multiple statements like
» INSERT INTO T VALUEY(1, 'fred');

» INSERT INTO T VALUES(2, 'fred’);
> INSERT INTO T VALUES(3, 'nancy’);

= Correct approach iIs
PreparedStatements

» INSERT INTO T VALUES(?, ?);

» Standard recommended JDBC practice, will perform better
on all databases, but early JDBC programmers still use
Separate statements.

!'_ Agenda

= Derby Overview

= System internals
= Language internals
= >> Store internals

!L Store Architecture

~ Store Access Interface @@=
AcCcess
(Pages)

C E

Storage Ale Jar HTTP MemoryAnything

System

!'_ Store Notes

= Store unaware of SQL semantics

* Index to heap linkage controlled by
language layer, not store

= All language access through rows in a
container, no concept of pages

* Fixed row model —enables row level
locking

!'_ Flexible Store

Designed to store serialized Java
objects

Variable length with no maximum
defined

Hence no limits on column size or row
size

Side effect of ease of use

» Row always fits, regardless of page size
Also considered:

»Java class pre- processing

\hIAAAIAI.l 1 AAAAA I AAAAA ‘AI‘ A*AI‘ANA

3_ Flexibility Downside

= Column field lengths stored in each
value

= No optimization for fixed length fields
» E.g. SMALLINT value is prepended by two
status bytes

Field state (NULL bit)

Field length (always 2) - “compressed
Integer”

* No fast access to N'" field, need to
walk through previous fields

!'_ Transaction Logging

= Aries logging system for rollback and
recovery

= Order of a change —write ahead
logging
> Write log record
» Modify data page

»>0On commit flush log up to point
containing commit record

»On data page flush, ensure log records
for all modifications are flushed to disk

!'_ Log Record

= On recovery initially the 'do' action of
alog record is made

= Subsequently the 'undo’ action may
occur If transaction was not
committed before crash

= Log Records are objects in Derby

= 'do’' method used for runtime
application as well as recovery

* 'undo’' method used for runtime
rollback and recovery

s Snaole code nath no recoverv <snecifice

!'_ Resources

= Apache site —www.apache.org

= Derby site —
incubator.apache.org/derby

= |IBM Cloudscape —
www.ilbm.com/developerworks/ clouds

cape
= JDBC — java.sun.com/jdbc

= Dan Debrunner

» debrunne@us.ibm.com (IBM)
»djd@debrunners.com (Apache Derby)

